Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-7, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157839

RESUMO

Ginsenoside F2 is a protopanaxadiol saponin compound with various biological activities, including antioxidant, anti-inflammatory, and anticancer properties. Ginsenoside F2 can be found in ginseng, but in low quantities. Therefore, ginsenoside F2 production predominantly relies on the biotransformation of various ginsenosides, such as ginsenosides Rb1 and Rd. In this study, we reported the production of ginsenoside F2 by gypenoside biotransformation with Aspergillus niger JGL8, isolated from Gynostemma pentaphyllum. Ginsenoside F2 could be produced by two different biotransformation pathways, namely Gyp-V-Rd-F2 and Gyp-XVII-F2. The product exhibited antioxidant activity against free radicals (DPPH) with IC50 value of 29.54 µg/mL. Optimal biotransformation conditions were a pH of 5.0, temperature of 40 °C, and 2 mg/mL of substrate. Enzyme kinetic parameters revealed that the hydrolysis rate of Gyp-V, Rd, and Gyp-XVII was 0.625, 0.588, and 0.417 mM/h, respectively. In conclusion, we demonstrated that gypenoside is a substitutable substrate for ginsenoside F2 biotransformation.

2.
Saudi J Biol Sci ; 26(4): 849-853, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31049013

RESUMO

The K2S2O8 assisted photocatalytic system was applied for treating refractory petrochemical wastewater. Co-TiO2/zeolite catalyst synthesized by sol-gel method was demonstrated to possess a good activity towards mineralization of the refractory petrochemical wastewater in the K2S2O8 assisted photocatalytic system. Orthogonal design was employed to optimize the reaction parameters, according to the results, K2S2O8 dosage was the most prominent impact factor. More experiments were conducted to further enhance the COD removal efficiency. In consideration of both efficiency and costs, the petrochemical wastewater was treated in the K2S2O8 assisted photocatalytic system at pH 4, K2S2O8 dosage 2.03 g/L, catalyst amount 250 g/L with irradiation by 1 lamp and aeration. The COD removal efficiency reached up to 93.4% with a rate constant of 1.14 × 10-2 per min, and Co-TiO2/zeolite showed a good stability towards the K2S2O8 assisted photocatalytic degradation of petrochemical wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...